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Abstract. From the conventional expansion of a d a r  magnetic potential (such M the 
earth's), an expansion of the vector potential ia obtained. This expansion is used for analyzing 

fields that  do not deviate far from a dipole. The results are compared with those of Quenby 
and Webber. Finally, the relation between Stormer's first integral and the third adiabatic ,/ 

* the motion of charged particles in axisymmetric magnetic fields, with special attention to such - , invariant is traced. 

The vector potential. A curl-free magnetic field, 
such as that of the earth, is generally expressed 
by means of a scalar potential V 

B = --grad V 

Since V is harmonic, it is conveniently expanded 
in spherical harmonics 

( 1) 

I',"(8, p) = PI"(8) exp imp 

where R is some constant length, e.g. the earth's 
radius. Occasionally, however, it is useful to 
express B in terms of a vector potential A 

c 

B = curlA (3) 
If the scalar potential is given aa in (2), A can 
be found in the following way. First, to reduce 
the arbitrariness in the choice of A the Coulomb 
gage condition is added 

3 

d i v A  = 0 (4) 
4 

A is then defined within the gradient of an 
arbitrary harmonic function and satisfies 

V z A  = 0 (5) 
Now it can be shown [Backus, 19581 that any 
solenoidal vector A can be expressed by means 
of two scalars, q1 in the form 

A = curl q l r  + curl curl !Pg (6) 
and the following identity holds: 

curl curl*r 3 grad (a/ar)(\kr) - rV% (7) 
In particular, if (5) is also satisfied, and !& 
can both be chosen to be harmonic [Smythe, 
1950, section 7.041. If * is a harmonic function, 
a(\E7)/& is one too, and it is evident from (7) 
that i45 then adds to A only the gradient of a 
harmonic function and contributes nothing to B. 
Using the remaining freedom in choice of A, +* 
can be set equal to zero, giving 

A = c u r l 9 ~  (8) 

B = grad (a/&)(qlr) (9) 

and by (7) 

The last equation can be identified with (1). 
The vector potential is then given by (8), with 

- A!.?- n + l  (q-}Yn-(a, R p) (10) 

A d  symmetry. From now on, only the w e  
in which the field is axially symmetric, i.e. does 
not depend on p, wi l l  be considered. For the time, 
however, B will not be restricted to be curl 
free. Then 

( A , r  sin 8) 
i a  

r2sin6atY 
B, =-- 

( A J  sin a) ( l l b )  
i a  B =--- 

r sin 8 ar 

If, in addition, 

B ,  = 0 (114 
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the indes cp n-ill be dropped from A , ,  for the 
vector potential 

A =  i , A  (12) 
then completely describes B as well as satisfying 
(4). The equation of a line of force in any 
meridional plane is then 

&/B,  = T d6/BJ 

Substituting ( l l ) ,  this is integrated a t  once to 
give 

Ar sin 6 = cy = const (13) 

The last equation has also been derived by 
Smythe [1950, section 7.081 and, from a some- 
what different approach, by Ray [1963, bottom 
of p. 91. If the field is also curl free, by 

A = -m,/ats 
When we drop the indes m in (10) 
Legendre polynomials P,(6), this gives 

(8) 

and use 

which upon substitution in (13) gives the relation 
between r and 6 on a line of force. 

Motion of a charged particle. Consider a 
particle of rest mass ma, charge q,  and relocity v 
moving in an asisymmetric field. Its Lagrangian 
will be (MKS) 

L = -moc2(1 - L ? / C ~ ) ~ ’ ~  + q(v.A) (15) 
Because of symmetry, p is a cyclic coordinate. 
Denoting by m the relativistic mass, a e  obtain 
the following first integral: 

+ qA,r  s i n 6  = const (16) 

Since energy is condened, it is useful to divide 
(16) by P = mr and to denote the new constant 
by y. If w is the angle between i, and v, then 

cos w = +r sin 6/0 

so that (16) becomes 

This equation has been derived by Stwmer 
[1955; it appears in slightly different form in 
part 2, equation 49.51 and was used by him, 
by Treiman [1953], by Ray 119561, and by 
Kelbgg and Winckler [1961] in calculating effects 
of a ring current around the earth, and also by 
Liist and Schliiter 119571 who derived i t  directly 
from the equation of motion. 

Now let (llc) be assumed, so that A ,  becomes 
-4. Then (17) gives 

(P /q ) r  sin 6 cos w = (yP/q) - 8 7  sin 6 

If the particle’s energy is low enough for the 
guiding-center approximation to hold, cos w will 
oscillate rapidly around zero, and the particle’s 
orbit in the (7, 6)  plane will alternate between 
the two sides of the line of force: 

Ar sin 6 = y P / q  (18) 
This can be regarded as the particle’s guiding 

h e  of force (for a similar approach, see Ray 
[1963]). In  (17), !cos wI is always less than unity 
while, in a near-dipole field (qA,/P) can be made 
as large as we want by going to low enough 
momentums. Thus, a t  low momentums the left- 
hand side of (17) must be the dderence between 
two much larger terms, and the particle does not 
stray far from the line of force of (18). 

Treiman [1953] also derived a method of 
calculating cutoff momentums (in the cosmic-raj 
sense, i.e. a criterion for finding when orbits are 
completely trapped by the field) applicable to 
fields which do not deviate far from a dipole 
field. When this is used, the following results 
are obtained. Assuming no esternal sources 
(a,, = 0), denoting the dipole moment by M I ,  
letting M = M$0/47r, and defining the Stormer 
unit of length 

R, = (qM/P)”’ (19) 

we find that for a given P (and consequent Ro) 
only trapped orbits esist when 

(20 b) 
The vertical cutoff momentum for orbits reaching 
the sphere r = R at colatitude 6 is then 
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Comparison with the Quenby-Webber theory. A 
theory dealing with the motion of charged 
particles in a general perturbed dipole field has 
been developed by Qzmzby and Webber [1959]. 
Though we cannot use the preceding results to 
check this theory in the general, nonaxisym- 
metric case, n-e can do so for axisymmetric fields. 

Instead of the harmonic expansion, Quenby 
and Webber used (close to the equatorial plane) 
functions ABn(6) to  describe the field; AB,, was 
defined as the horizontal component, at r = R, 
of that part of B which falls off as r - ( n + 2 ) .  The 
value of AB,, in an  axisymmetric field is easily 
derived from the scalar potential and in the 
absence of external sources (b, = 0) is 

(In the actual paper, H and AH,, were used rather 
than B and AB,,.) With the notation of (19) 
and (22), (14) becomes 

This agrees with (18) [Quenby and TVebber, 19591, 
which gives the contribution of the quadrupole 
term ABt to A .  Continuing by Trciman's method, 
the above authors calculated the effects of AB2 
on the critical y and r and finally showed that 
the cutoff momentum in the equatorial plane 
becomes 

The analogous expressions for arbitrary n are not 
explicitly given, but it is stated that a similar 
modification of P, is obtained (in the equatorial 
plane) with the difference that the factor 3/4 is 
replaced by 

2 (1 - 2-") 
n 

This agrees with (21). 
Unfortunately, in a later paper [li.ebber, 19631 

in which the effects of higher-order terms are 

(though they yield correct results for n = 2). 
They should be adjusted aa follows (numbers 
refer to equations in the paper by W e b b  [1963]) : 
In  the last term of (9), the factor cos X should 
be deleted, the last term of (10) should read 

and that of (11) 2 R:-' 

After appropriate changes in notation, these 
revised equations agree with the results given 
here. 

Aclhbatic invariance. Let an axisymmetric 
magnetic field satisfying (l lc) and (12) (e.g., a 
curl-free field) be given. Lagrange's equations 
and therefore (16) still hold when the magnetic 
field is time dependent, even though energy is 
no longer conserved on account of the induced 
electric field. The same argument leading to the 
neglect of cos w in (17) for low momentums then 
shows that, for low momentums, the second 
term of (16) is much larger than the first. 
Neglecting the fist term completely gives 

aL 
a+ - p ,  = - N qAr sin 6 iX const (24) 

Equation 24 shows, in a time-dependent axisym- 
metric field, how low-energy particles shift from 
one magnetic shell to another; the line of force 
parameter 01 of (13) is then conserved. This 
result can be generalized as follows. 

Suppose the axisymmetric field undergoes a 
perturbation which is now not only time de- 
pendent but also asymmetrical. Equation 16 and 
its low-energy limit (24) then no longer hold. 
However, since the motion of trapped particles 
in the unperturbed field can be regarded as 
periodic in the coordinate p, the action integral 

,.2= 

J ,  = lo P ,  c 4  

is adiabatically conserved [compare Landau and 
Lifshitz, 1951, p .  54, and 1960, section 49-50], 
where p ,  is a component of the canonical mo- 
mentum and can be approximated for low 
momentums by (24). The element of arc length is 

d l  = i, dr -+ isr d29 +- i,r sin ddrp 

explicitly given, they are incorrectly transcribed so that 
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J ,  g q # A d 1  

with the integral extending over one rotation 
of (p. By Stokes’ theorem 

J ,  g q 1 curl A ds = q 9  

where 9 denotes the flux enclosed by the shell 
to which the particle is attached. Thus we obtain 
the flux invariant, or third adiabatic invariant 
[Northrop and Teller, 19601, as a generalization 
of Stormer’s integral; in a perturbed axisym- 
metric field, the magnetic flux through a mag- 
netic shell is adiabatically conserved. 

APPENDIX 

Treiman’s approach is the following. By (17), 
for any given y and v the accessible region in the 
(7, 9) plane is bounded by lines where cos w 
equals 1 or (- 1). Of these (in fields not deviating 
much from a dipole) the former 

7 q A  - ] 
r s i n 9  P (25) 

determine whether trapping occurs. Regarding y 
as a parameter, Treiman [1953] showed that 
trapping just starts when, in the equatorial 
plane, (25) acquires a double root for r.  In  
near-dipole fields without external sources, this 
occurs when, for sind = 1, 

ay/ar = o 
(when external sources exist this may not hold 
[Ray,  19561). For purposes of calculation, it is 
useful here to split A into two parts, A I  giving 
the dipole field and A )  (small by comparison) 
the higher terms. If M is defined as in (19) 

A ,  = M sin 9/r2 (26) 
1 Putting d = 7r/2 and neglecting all externa 

~ources, (25) becomes 

(27) 

Since dP,/d9 vanishes in the equatorial plane 
for any even n, only odd values of n need to be 
considered in the last term. Let (25) be satisfied 
a t  r = R 1 ;  then 

As a first approximation, let the higher terms be 
neglected. Then 

R, E Ro = (qM/P)”’ (29) 

Ro is the well-known Stormer unit of length. 
Now let 

1 

R, = Rn(1 + 6 )  (30) , 
Collecting all first-order terms in (25) gives 

However, substituting (30) in (27) shows that 
to f i s t  order of approximation the critical y 
(denoted y.) does not depend on 6. 

It does, however, depend on the momentum P 
(assume for simplicity all particles are identical, 
e.g. protons) both directly and through Ro, and 
represents the limit of complete trapping for 
this momentum. Suppose now that such mar- 
ginally trapped particles hit the earth (T  = R )  
vertically (cos w = 0) at colatituded; they then 
represent the vertical cutoff momentum P. a t  
that colatitude and by (17) 

qr s i n 6  M sin 29 
P 1 R2 y . = - -  

Neglecting nondipole components, we obtain 
from (32) and (33) as a first approximation 

R/Ro = $ sin2 d (34) 

This approximation is inserted into the correc- 
tion terms of (32) and (33), giving 

273 - 1 

This differs from (21) only by second-order terms. 
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